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History of GPUs
A short but parallel story

1999 Graphics computation pipeline implemented in dedicated
graphics hardware
Computations using OpenGL graphics library [1]
»GPU« coined by NVIDIA [2]

2001 NVIDIA GeForce 3 with programmable shaders (instead of fixed
pipeline) and floating-point support; 2003: DirectX 9 at ATI

2007 CUDA
2009 OpenCL
2017 Top 500: 15% with GPUs [3], Green 500: 9 of 10 of top 10 with

GPUs [4]
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JURONJULIA

JURON – A Human Brain Project Prototype
18 nodes with IBM POWER8NVL CPUs (2× 10 cores)
Per Node: 4 NVIDIA Tesla P100 cards, connected via NVLink
GPU: 0.38 PFLOP/s peak performance
Dedicated visualization nodes
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Getting GPU-Acquainted
Some Applications

Location of Code:
Introduction-G…/Tasks/getting_started/

See Instructions.md for hints.

TASK
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Getting GPU-Acquainted
Some Applications

Location of Code:
Introduction-G…/Tasks/getting_started/

See Instructions.md for hints.

Dot Product GEMM

MandelbrotN-Body

TASK
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The GPU Platform
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CPU vs. GPU
Amatter of specialties

Transporting one
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Transporting many
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CPU vs. GPU
Chip

ALUALU

ALU ALU
Control

Cache

DRAM DRAM
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GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput
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Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA
Memory transfers need special consideration!
Do as little as possible!
Formerly: Explicitly copy data to/from GPU
Now: Can be done automatically
Example values

P100
16GB RAM, 720 GB/s

V100
16GB RAM, 900 GB/s
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HBM2
<720GB/s
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→ Separate device from CPU
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Formerly: Explicitly copy data to/from GPU
Now: Can be done automatically
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Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

NVLink
≈300GB/s

HBM2
<900GB/s

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA and UM
Memory transfers need special consideration!
Do as little as possible!
Formerly: Explicitly copy data to/from GPU
Now: Can be done automatically
Example values

P100
16GB RAM, 720 GB/s

V100
16GB RAM, 900 GB/s
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Processing Flow
CPU→ GPU→ CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU
memory

, transfer program

2 Load GPU program, execute on SMs, get
(cached) data from memory; write back

3 Transfer results back to host memory

Andreas Herten | GPU Introduction | 16 October 2017 # 13 31
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Processing Flow
CPU→ GPU→ CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU
memory, transfer program

2 Load GPU program, execute on SMs, get
(cached) data from memory; write back

3 Transfer results back to host memory
UVA: Manual data transfer invocations
UM: Driver automatically transfers data
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GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Andreas Herten | GPU Introduction | 16 October 2017 # 14 31



M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Andreas Herten | GPU Introduction | 16 October 2017 # 14 31



M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Async
Following different streams

Problem: Memory transfer is comparably slow
Solution: Do something else in meantime (computation)!

→ Overlap tasks

Copy and compute engines run separately (streams)
Copy Compute Copy Compute

Copy Compute Copy Compute

GPU needs to be fed: Schedule many computations
CPU can do other work while GPU computes; synchronization

Andreas Herten | GPU Introduction | 16 October 2017 # 15 31
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Overview

Aim: Hide Latency
Everything else follows
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Asynchronicity

Memory

→ High Throughput
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SIMT
Of threads and warps

CPU:
— Single Instruction, Multiple Data (SIMD)

— Simultaneous Multithreading (SMT)
GPU: Single Instruction, Multiple Threads (SIMT)

— CPU core≊ GPUmultiprocessor (SM)
— Working unit: set of threads (32, awarp)
— Fast switching of threads (large register file)
— Branching if
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Scalar
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Low Latency vs. High Throughput
Maybe GPU’s ultimate feature

CPU Minimizes latency within each thread
GPU Hides latency with computations from other thread warps

CPU Core: Low Latency
T1 T2 T3 T4

GPU Streaming Multiprocessor: High Throughput
W1

W2

W3

W4

Waiting
Ready
Context Switch
Processing
Thread/Warp
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CPU vs. GPU
Let’s summarize this!

Optimized for low latency
+ Large main memory
+ Fast clock rate
+ Large caches
+ Branch prediction
+ Powerful ALU
− Relatively lowmemory

bandwidth
− Cachemisses costly
− Low performance per watt

Optimized for high throughput
+ High bandwidth main

memory
+ Latency tolerant (parallelism)
+ More compute resources
+ High performance per watt
− Limited memory capacity
− Low per-thread performance
− Extension card
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Programming GPUs
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Summary of Acceleration Possibilities

Application

Libraries OpenACC
Directives

Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration
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Libraries
The truth is out there!

Programming GPUs is easy: Just don’t!

Use applications & libraries!

W
iz
ar
d:

Br
ea
ze
ll
[9
]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

th ano
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! Parallelism

Libraries are not enough?

You need to write your own GPU code?
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Primer on Parallel Scaling
Amdahl’s Law

Possible maximum speedup for N parallel processors
Total Time t = tserial + tparallel

N Processors t(N) = ts + tp/N
Speedup s(N) = t/t(N) = ts+tp

ts+tp/N Efficiency: ε = s/N

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
Number of Processors

0

20

40

60

80

100

Sp
ee

du
p

Parallel Portion: 50%
Parallel Portion: 75%
Parallel Portion: 90%
Parallel Portion: 95%
Parallel Portion: 99%
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! Parallelism

Parallel programming is not easy!

Things to consider:
Is my application computationally intensive enough?
What are the levels of parallelism?
Howmuch data needs to be transferred?
Is the gainworth the pain?
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Possibilities

Different levels of closeness to GPUwhen GPU-programming, which
can ease the pain…

OpenACC
OpenMP
Thrust
PyCUDA
CUDA Fortran
CUDA
OpenCL
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CUDA SAXPY
SAXPY: y⃗ = a⃗x+ y⃗ (single precision)

__global__ void saxpy_cuda(int n, float a, float * x, float * y) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y
cudaMallocManaged(&x, n * sizeof(float));
cudaMallocManaged(&y, n * sizeof(float));

saxpy_cuda<<<2, 5>>>(n, a, x, y);

cudaDeviceSynchronize();

Andreas Herten | GPU Introduction | 16 October 2017 # 28 31
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CUDA Threading Model
Warp the kernel, it’s a thread!

Methods to exploit parallelism:

— Threads

→ Block

— Blocks

→ Grid

— Threads & blocks in 3D3D3D3D

Execution entity: threads
— Lightweight→ fast switchting!
— 1000s threads execute simultaneously→ order non-deterministic!

OpenACC takes care of threads and blocks for you!
→ Block configuration is just an optimization!

Andreas Herten | GPU Introduction | 16 October 2017 # 29 31
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Summary of Acceleration Possibilities

Application

Libraries OpenACC
Directives

Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration
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Conclusions

GPUs achieve performance by specialized hardware→ threads
— Faster time-to-solution
— Lower energy-to-solution

GPU acceleration can be done by different means
Libraries are the easiest, CUDA the fullest
OpenACC good compromise
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Conclusions

GPUs achieve performance by specialized hardware→ threads
— Faster time-to-solution
— Lower energy-to-solution

GPU acceleration can be done by different means
Libraries are the easiest, CUDA the fullest
OpenACC good compromise

Thank you

for your att
ention!

a.herten@fz-juelich.de
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Appendix
Glossary
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Glossary I

API A programmatic interface to software by well-defined
functions. Short for application programming
interface. 99

ATI Canada-based GPUsmanufacturing company; bought
by AMD in 2006. 3, 4, 5, 6, 7

CUDA Computing platform for GPUs from NVIDIA. Provides,
among others, CUDA C/C++. 2, 3, 4, 5, 6, 7, 72, 73, 74,
75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,
91, 95, 96, 97, 99

NVIDIA US technology company creating GPUs. 3, 4, 5, 6, 7, 12,
99
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Glossary II

NVLink NVIDIA’s communication protocol connecting CPU↔
GPU and GPU↔ GPUwith 80GB/s. PCI-Express:
16 GB/s. 12, 99

OpenACC Directive-based programming, primarily for many-core
machines. 1, 72, 73, 74, 83, 84, 85, 86, 87, 88, 89, 90, 91

OpenCL The Open Computing Language. Framework for writing
code for heterogeneous architectures (CPU, GPU, DSP,
FPGA). The alternative to CUDA. 3, 4, 5, 6, 7, 72, 73, 74

OpenGL The Open Graphics Library, an API for rendering
graphics across different hardware architectures. 3, 4,
5, 6, 7

OpenMP Directive-based programming, primarily for
multi-threadedmachines. 72, 73, 74
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Glossary III

P100 A large GPUwith the Pascal architecture fromNVIDIA. It
employs NVLink as its interconnect and has fast HBM2
memory. 12

Pascal GPU architecture from NVIDIA (announced 2016). 99

SAXPY Single-precision A× X+ Y. A simple code example of
scaling a vector and adding an offset. 75, 76, 77, 78, 79,
80, 81, 82

Tesla The GPU product line for general purpose computing
computing of NVIDIA. 12

Thrust A parallel algorithms library for (among others) GPUs.
See https://thrust.github.io/. 72, 73, 74
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