
M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

GPU Introduction
JSC OpenACC Course 2017

Andreas Herten, Forschungszentrum Jülich, 16 October 2017

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Outline

Introduction
GPU History
Architecture Comparison
Jülich Systems
App Showcase

The GPU Platform
3 Core Features

Memory
Asynchronicity
SIMT

High Throughput
Summary

Programming GPUs
Libraries
GPU programmingmodels
CUDA

Andreas Herten | GPU Introduction | 16 October 2017 # 2 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

History of GPUs
A short but parallel story

1999 Graphics computation pipeline implemented in dedicated
graphics hardware
Computations using OpenGL graphics library [1]
»GPU« coined by NVIDIA [2]

2001 NVIDIA GeForce 3 with programmable shaders (instead of fixed
pipeline) and floating-point support; 2003: DirectX 9 at ATI

2007 CUDA
2009 OpenCL
2017 Top 500: 15% with GPUs [3], Green 500: 9 of 10 of top 10 with

GPUs [4]

Andreas Herten | GPU Introduction | 16 October 2017 # 3 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

History of GPUs
A short but parallel story

1999 Graphics computation pipeline implemented in dedicated
graphics hardware
Computations using OpenGL graphics library [1]
»GPU« coined by NVIDIA [2]

2001 NVIDIA GeForce 3 with programmable shaders (instead of fixed
pipeline) and floating-point support; 2003: DirectX 9 at ATI

2007 CUDA
2009 OpenCL
2017 Top 500: 15% with GPUs [3], Green 500: 9 of 10 of top 10 with

GPUs [4]

Andreas Herten | GPU Introduction | 16 October 2017 # 3 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

History of GPUs
A short but parallel story

1999 Graphics computation pipeline implemented in dedicated
graphics hardware
Computations using OpenGL graphics library [1]
»GPU« coined by NVIDIA [2]

2001 NVIDIA GeForce 3 with programmable shaders (instead of fixed
pipeline) and floating-point support; 2003: DirectX 9 at ATI

2007 CUDA

2009 OpenCL
2017 Top 500: 15% with GPUs [3], Green 500: 9 of 10 of top 10 with

GPUs [4]

Andreas Herten | GPU Introduction | 16 October 2017 # 3 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

History of GPUs
A short but parallel story

1999 Graphics computation pipeline implemented in dedicated
graphics hardware
Computations using OpenGL graphics library [1]
»GPU« coined by NVIDIA [2]

2001 NVIDIA GeForce 3 with programmable shaders (instead of fixed
pipeline) and floating-point support; 2003: DirectX 9 at ATI

2007 CUDA
2009 OpenCL

2017 Top 500: 15% with GPUs [3], Green 500: 9 of 10 of top 10 with
GPUs [4]

Andreas Herten | GPU Introduction | 16 October 2017 # 3 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

History of GPUs
A short but parallel story

1999 Graphics computation pipeline implemented in dedicated
graphics hardware
Computations using OpenGL graphics library [1]
»GPU« coined by NVIDIA [2]

2001 NVIDIA GeForce 3 with programmable shaders (instead of fixed
pipeline) and floating-point support; 2003: DirectX 9 at ATI

2007 CUDA
2009 OpenCL
2017 Top 500: 15% with GPUs [3], Green 500: 9 of 10 of top 10 with

GPUs [4]

Andreas Herten | GPU Introduction | 16 October 2017 # 3 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Status Quo Across Architectures
Performance

102

103

104

 2008 2010 2012 2014 2016

HD 3870

HD 4870

HD 5870

HD 6970

HD 6970

HD 7970 G
Hz E

d.

HD 8970

Fire
Pro W

9100

Fire
Pro S

9150

X5482

X5492

W
5590

X5680

X5690

E5-2690 E5-2697 v2

E5-2699 v3

E5-2699 v3

E5-2699 v4

Tesla
 C

1060

Tesla
 C

1060 Tesla
 C

2050 Tesla
 M

2090

Tesla
 K

20

Tesla
 K

20X

Tesla
 K

40

Tesla
 K

40

Tesla
 P

100

Xeon Phi 7120 (KNC)

Xeo
n

Phi
 7

29
0

(K
NL)

G
F

LO
P

/s
ec

End of Year

Theoretical Peak Performance, Double Precision

INTEL Xeon CPUs

NVIDIA Tesla GPUs

AMD Radeon GPUs

INTEL Xeon Phis

Gr
ap

hi
c:
Ru

pp
[5
]

Andreas Herten | GPU Introduction | 16 October 2017 # 4 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Status Quo Across Architectures
Memory Bandwidth

10
1

10
2

10
3

 2008 2010 2012 2014 2016

HD 3870

HD 4870
HD 5870

HD 6970

HD 6970
HD 7970 G

Hz Ed.

HD 8970
Fire

Pro W
9100

Fire
Pro S9150

X5482
X5492 W5590

X5680
X5690

E5-2690
E5-2697 v2

E5-2699 v3

E5-2699 v3

E5-2699 v4Tesla C
1060

Tesla C
1060 Tesla C

2050
Tesla M

2090

Tesla K20 Tesla K20X

Tesla K40

Tesla P100

Xeon Phi 7120 (KNC)

X
eo

n
P
hi

 7
29

0
(K

N
L)

G
B

/s
e

c

End of Year

Theoretical Peak Memory Bandwidth Comparison

INTEL Xeon CPUs

NVIDIA Tesla GPUs

AMD Radeon GPUs

INTEL Xeon Phis

Gr
ap

hi
c:
Ru

pp
[5
]

Andreas Herten | GPU Introduction | 16 October 2017 # 4 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Status Quo Across Architectures
Memory Bandwidth

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 2008 2010 2012 2014 2016

HD 3870 HD 4870 HD 5870
HD 6970

HD 6970

HD 7970 G
Hz Ed.

HD 8970 Fire
Pro W

9100

Fire
Pro S9150

X5482
X5492

W5590

X5680
X5690

E5-2690

E5-2697 v2

E5-2699 v3

E5-2699 v3

E5-2699 v4

Tesla C
1060

Tesla C
1060

Tesla C
2050

Tesla M
2090

Tesla K20
Tesla K20X

Tesla K40

Tesla P100

Xeon Phi 7120 (KNC)

X
eo

n
P
hi

 7
29

0
(K

N
L)

G
B

/s
e

c

End of Year

Theoretical Peak Memory Bandwidth Comparison

INTEL Xeon CPUs

NVIDIA Tesla GPUs

AMD Radeon GPUs

INTEL Xeon Phis

Gr
ap

hi
c:
Ru

pp
[5
]

Andreas Herten | GPU Introduction | 16 October 2017 # 4 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Andreas Herten | GPU Introduction | 16 October 2017 # 5 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

JURONJULIA

JURON – A Human Brain Project Prototype
18 nodes with IBM POWER8NVL CPUs (2× 10 cores)
Per Node: 4 NVIDIA Tesla P100 cards, connected via NVLink
GPU: 0.38 PFLOP/s peak performance
Dedicated visualization nodes

Andreas Herten | GPU Introduction | 16 October 2017 # 6 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Getting GPU-Acquainted
Some Applications

Location of Code:
Introduction-G…/Tasks/getting_started/

See Instructions.md for hints.

TASK

Andreas Herten | GPU Introduction | 16 October 2017 # 7 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Getting GPU-Acquainted
Some Applications

Location of Code:
Introduction-G…/Tasks/getting_started/

See Instructions.md for hints.

Dot Product GEMM

MandelbrotN-Body

TASK

Andreas Herten | GPU Introduction | 16 October 2017 # 7 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Getting GPU-Acquainted
Some Applications

103 104 105 106 107

Length of Vector

100

101

102

103

M
FL

O
P/

s
DDot Benchmark

CPU
GPU

Dot Product

2000 4000 6000 8000 10000 12000 14000 16000
Size of Square Matrix

0

100

200

300

400

500

600

700

800

GF
LO

P/
s

DGEMM Benchmark

CPU
GPU

GEMM

5000 10000 15000 20000 25000 30000
Width of Image

0

50

100

150

200

250

300

350

M
Pi

xe
l/

s

Mandelbrot Benchmark

CPU
GPU

Mandelbrot

20000 40000 60000 80000 100000 120000
Number of Particles

0

1000

2000

3000

4000

5000

GF
LO

P/
s

N-Body Benchmark

1 GPU SP
2 GPUs SP
4 GPUs SP
1 GPU DP
2 GPUs DP
4 GPUs DP

N-Body

TASK

Andreas Herten | GPU Introduction | 16 October 2017 # 7 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

The GPU Platform

Andreas Herten | GPU Introduction | 16 October 2017 # 8 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CPU vs. GPU
Amatter of specialties

Transporting one

Gr
ap

hi
cs
:L
ee

[6
]a

nd
Sh

ea
rin

gs
H
ol
id
ay
s[
7]

Transporting many

Andreas Herten | GPU Introduction | 16 October 2017 # 9 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CPU vs. GPU
Amatter of specialties

Transporting one Gr
ap

hi
cs
:L
ee

[6
]a

nd
Sh

ea
rin

gs
H
ol
id
ay
s[
7]

Transporting many

Andreas Herten | GPU Introduction | 16 October 2017 # 9 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CPU vs. GPU
Chip

ALUALU

ALU ALU
Control

Cache

DRAM DRAM

Andreas Herten | GPU Introduction | 16 October 2017 # 10 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Andreas Herten | GPU Introduction | 16 October 2017 # 11 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Andreas Herten | GPU Introduction | 16 October 2017 # 11 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Andreas Herten | GPU Introduction | 16 October 2017 # 11 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA
Memory transfers need special consideration!
Do as little as possible!
Formerly: Explicitly copy data to/from GPU
Now: Can be done automatically
Example values

P100
16GB RAM, 720 GB/s

V100
16GB RAM, 900 GB/s

Andreas Herten | GPU Introduction | 16 October 2017 # 12 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA

Memory transfers need special consideration!
Do as little as possible!
Formerly: Explicitly copy data to/from GPU
Now: Can be done automatically
Example values

P100
16GB RAM, 720 GB/s

V100
16GB RAM, 900 GB/s

Andreas Herten | GPU Introduction | 16 October 2017 # 12 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

PCIe
<16GB/s

HBM2
<720GB/s

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA

Memory transfers need special consideration!
Do as little as possible!
Formerly: Explicitly copy data to/from GPU
Now: Can be done automatically
Example values

P100
16GB RAM, 720 GB/s

V100
16GB RAM, 900 GB/s

Andreas Herten | GPU Introduction | 16 October 2017 # 12 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

PCIe
<16GB/s

HBM2
<720GB/s

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA
Memory transfers need special consideration!
Do as little as possible!

Formerly: Explicitly copy data to/from GPU
Now: Can be done automatically
Example values

P100
16GB RAM, 720 GB/s

V100
16GB RAM, 900 GB/s

Andreas Herten | GPU Introduction | 16 October 2017 # 12 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

PCIe
<16GB/s

HBM2
<720GB/s

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA and UM
Memory transfers need special consideration!
Do as little as possible!
Formerly: Explicitly copy data to/from GPU
Now: Can be done automatically

Example values
P100

16GB RAM, 720 GB/s

V100
16GB RAM, 900 GB/s

Andreas Herten | GPU Introduction | 16 October 2017 # 12 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

HBM2
<720GB/s

NVLink
≈160GB/s

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA and UM
Memory transfers need special consideration!
Do as little as possible!
Formerly: Explicitly copy data to/from GPU
Now: Can be done automatically

Example values
P100

16GB RAM, 720 GB/s

V100
16GB RAM, 900 GB/s

Andreas Herten | GPU Introduction | 16 October 2017 # 12 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

HBM2
<720GB/s

NVLink
≈160GB/s

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA and UM
Memory transfers need special consideration!
Do as little as possible!
Formerly: Explicitly copy data to/from GPU
Now: Can be done automatically
Example values

P100
16GB RAM, 720 GB/s

V100
16GB RAM, 900 GB/s

Andreas Herten | GPU Introduction | 16 October 2017 # 12 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

NVLink
≈300GB/s

HBM2
<900GB/s

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA and UM
Memory transfers need special consideration!
Do as little as possible!
Formerly: Explicitly copy data to/from GPU
Now: Can be done automatically
Example values

P100
16GB RAM, 720 GB/s

V100
16GB RAM, 900 GB/s

Andreas Herten | GPU Introduction | 16 October 2017 # 12 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Processing Flow
CPU→ GPU→ CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU
memory

, transfer program

2 Load GPU program, execute on SMs, get
(cached) data from memory; write back

3 Transfer results back to host memory

Andreas Herten | GPU Introduction | 16 October 2017 # 13 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Processing Flow
CPU→ GPU→ CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU
memory

, transfer program

2 Load GPU program, execute on SMs, get
(cached) data from memory; write back

3 Transfer results back to host memory

Andreas Herten | GPU Introduction | 16 October 2017 # 13 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Processing Flow
CPU→ GPU→ CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU
memory, transfer program

2 Load GPU program, execute on SMs, get
(cached) data from memory; write back

3 Transfer results back to host memory

Andreas Herten | GPU Introduction | 16 October 2017 # 13 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Processing Flow
CPU→ GPU→ CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU
memory, transfer program

2 Load GPU program, execute on SMs, get
(cached) data from memory; write back

3 Transfer results back to host memory

Andreas Herten | GPU Introduction | 16 October 2017 # 13 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Processing Flow
CPU→ GPU→ CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU
memory, transfer program

2 Load GPU program, execute on SMs, get
(cached) data from memory; write back

3 Transfer results back to host memory

Andreas Herten | GPU Introduction | 16 October 2017 # 13 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Processing Flow
CPU→ GPU→ CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU
memory, transfer program

2 Load GPU program, execute on SMs, get
(cached) data from memory; write back

3 Transfer results back to host memory
UVA: Manual data transfer invocations
UM: Driver automatically transfers data

Andreas Herten | GPU Introduction | 16 October 2017 # 13 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Andreas Herten | GPU Introduction | 16 October 2017 # 14 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Andreas Herten | GPU Introduction | 16 October 2017 # 14 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Async
Following different streams

Problem: Memory transfer is comparably slow
Solution: Do something else in meantime (computation)!

→ Overlap tasks

Copy and compute engines run separately (streams)
Copy Compute Copy Compute

Copy Compute Copy Compute

GPU needs to be fed: Schedule many computations
CPU can do other work while GPU computes; synchronization

Andreas Herten | GPU Introduction | 16 October 2017 # 15 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Andreas Herten | GPU Introduction | 16 October 2017 # 16 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Andreas Herten | GPU Introduction | 16 October 2017 # 16 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

SIMT
Of threads and warps

CPU:
— Single Instruction, Multiple Data (SIMD)

— Simultaneous Multithreading (SMT)
GPU: Single Instruction, Multiple Threads (SIMT)

— CPU core≊ GPUmultiprocessor (SM)
— Working unit: set of threads (32, awarp)
— Fast switching of threads (large register file)
— Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

+

+

+

C0

C1

C2

C3

=

=

=

=

Scalar

Andreas Herten | GPU Introduction | 16 October 2017 # 17 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

SIMT
Of threads and warps

CPU:
— Single Instruction, Multiple Data (SIMD)

— Simultaneous Multithreading (SMT)
GPU: Single Instruction, Multiple Threads (SIMT)

— CPU core≊ GPUmultiprocessor (SM)
— Working unit: set of threads (32, awarp)
— Fast switching of threads (large register file)
— Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Andreas Herten | GPU Introduction | 16 October 2017 # 17 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

SIMT
Of threads and warps

CPU:
— Single Instruction, Multiple Data (SIMD)
— Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)

— CPU core≊ GPUmultiprocessor (SM)
— Working unit: set of threads (32, awarp)
— Fast switching of threads (large register file)
— Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Andreas Herten | GPU Introduction | 16 October 2017 # 17 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

SIMT
Of threads and warps

CPU:
— Single Instruction, Multiple Data (SIMD)
— Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)

— CPU core≊ GPUmultiprocessor (SM)
— Working unit: set of threads (32, awarp)
— Fast switching of threads (large register file)
— Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

Andreas Herten | GPU Introduction | 16 October 2017 # 17 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

SIMT
Of threads and warps

CPU:
— Single Instruction, Multiple Data (SIMD)
— Simultaneous Multithreading (SMT)
GPU: Single Instruction, Multiple Threads (SIMT)

— CPU core≊ GPUmultiprocessor (SM)
— Working unit: set of threads (32, awarp)
— Fast switching of threads (large register file)
— Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

Andreas Herten | GPU Introduction | 16 October 2017 # 17 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

SIMT
Of threads and warps

CPU:
— Single Instruction, Multiple Data (SIMD)
— Simultaneous Multithreading (SMT)
GPU: Single Instruction, Multiple Threads (SIMT)

— CPU core≊ GPUmultiprocessor (SM)
— Working unit: set of threads (32, awarp)
— Fast switching of threads (large register file)
— Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Andreas Herten | GPU Introduction | 16 October 2017 # 17 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

SIMT
Of threads and warps

CPU:
— Single Instruction, Multiple Data (SIMD)
— Simultaneous Multithreading (SMT)
GPU: Single Instruction, Multiple Threads (SIMT)
— CPU core≊ GPUmultiprocessor (SM)
— Working unit: set of threads (32, awarp)
— Fast switching of threads (large register file)
— Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Andreas Herten | GPU Introduction | 16 October 2017 # 17 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

SIMT
Of threads and warps

CPU:
— Single Instruction, Multiple Data (SIMD)
— Simultaneous Multithreading (SMT)
GPU: Single Instruction, Multiple Threads (SIMT)
— CPU core≊ GPUmultiprocessor (SM)
— Working unit: set of threads (32, awarp)
— Fast switching of threads (large register file)
— Branching if

Pascal GP100

Gr
ap

hi
cs
:N

vi
di
a
Co

rp
or
at
io
n
[8
]

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Andreas Herten | GPU Introduction | 16 October 2017 # 17 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

SIMT
Of threads and warps

CPU:
— Single Instruction, Multiple Data (SIMD)
— Simultaneous Multithreading (SMT)
GPU: Single Instruction, Multiple Threads (SIMT)
— CPU core≊ GPUmultiprocessor (SM)
— Working unit: set of threads (32, awarp)
— Fast switching of threads (large register file)
— Branching if

Pascal GP100

Gr
ap

hi
cs
:N

vi
di
a
Co

rp
or
at
io
n
[8
]

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Andreas Herten | GPU Introduction | 16 October 2017 # 17 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

SIMT
Of threads and warps

CPU:
— Single Instruction, Multiple Data (SIMD)
— Simultaneous Multithreading (SMT)
GPU: Single Instruction, Multiple Threads (SIMT)
— CPU core≊ GPUmultiprocessor (SM)
— Working unit: set of threads (32, awarp)
— Fast switching of threads (large register file)
— Branching if

Pascal GP100

Multiprocessor

Gr
ap

hi
cs
:N

vi
di
a
Co

rp
or
at
io
n
[8
]

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Andreas Herten | GPU Introduction | 16 October 2017 # 17 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Low Latency vs. High Throughput
Maybe GPU’s ultimate feature

CPU Minimizes latency within each thread
GPU Hides latency with computations from other thread warps

CPU Core: Low Latency
T1 T2 T3 T4

GPU Streaming Multiprocessor: High Throughput
W1

W2

W3

W4

Waiting
Ready
Context Switch
Processing
Thread/Warp

Andreas Herten | GPU Introduction | 16 October 2017 # 18 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Low Latency vs. High Throughput
Maybe GPU’s ultimate feature

CPU Minimizes latency within each thread
GPU Hides latency with computations from other thread warps

CPU Core: Low Latency
T1 T2 T3 T4

GPU Streaming Multiprocessor: High Throughput
W1

W2

W3

W4

Waiting
Ready
Context Switch
Processing
Thread/Warp

Andreas Herten | GPU Introduction | 16 October 2017 # 18 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Low Latency vs. High Throughput
Maybe GPU’s ultimate feature

CPU Minimizes latency within each thread
GPU Hides latency with computations from other thread warps

CPU Core: Low Latency
T1 T2 T3 T4

GPU Streaming Multiprocessor: High Throughput
W1

W2

W3

W4

Waiting
Ready
Context Switch
Processing
Thread/Warp

Andreas Herten | GPU Introduction | 16 October 2017 # 18 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CPU vs. GPU
Let’s summarize this!

Optimized for low latency
+ Large main memory
+ Fast clock rate
+ Large caches
+ Branch prediction
+ Powerful ALU
− Relatively lowmemory

bandwidth
− Cachemisses costly
− Low performance per watt

Optimized for high throughput
+ High bandwidth main

memory
+ Latency tolerant (parallelism)
+ More compute resources
+ High performance per watt
− Limited memory capacity
− Low per-thread performance
− Extension card

Andreas Herten | GPU Introduction | 16 October 2017 # 19 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Programming GPUs

Andreas Herten | GPU Introduction | 16 October 2017 # 20 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Summary of Acceleration Possibilities

Application

Libraries OpenACC
Directives

Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Andreas Herten | GPU Introduction | 16 October 2017 # 21 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Summary of Acceleration Possibilities

Application

Libraries OpenACC
Directives

Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Andreas Herten | GPU Introduction | 16 October 2017 # 21 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Libraries
The truth is out there!

Programming GPUs is easy: Just don’t!

Use applications & libraries!

W
iz
ar
d:

Br
ea
ze
ll
[9
]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

th ano

Andreas Herten | GPU Introduction | 16 October 2017 # 22 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Libraries
The truth is out there!

Programming GPUs is easy: Just don’t!

Use applications & libraries!

W
iz
ar
d:

Br
ea
ze
ll
[9
]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

th ano

Andreas Herten | GPU Introduction | 16 October 2017 # 22 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Libraries
The truth is out there!

Programming GPUs is easy: Just don’t!

Use applications & libraries!

W
iz
ar
d:

Br
ea
ze
ll
[9
]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

th ano

Andreas Herten | GPU Introduction | 16 October 2017 # 22 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Libraries
The truth is out there!

Programming GPUs is easy: Just don’t!

Use applications & libraries!

W
iz
ar
d:

Br
ea
ze
ll
[9
]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

th ano

Andreas Herten | GPU Introduction | 16 October 2017 # 22 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Libraries
The truth is out there!

Programming GPUs is easy: Just don’t!

Use applications & libraries!

W
iz
ar
d:

Br
ea
ze
ll
[9
]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

th ano

Andreas Herten | GPU Introduction | 16 October 2017 # 22 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Summary of Acceleration Possibilities

Application

Libraries OpenACC
Directives

Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Andreas Herten | GPU Introduction | 16 October 2017 # 23 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Summary of Acceleration Possibilities

Application

Libraries OpenACC
Directives

Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Andreas Herten | GPU Introduction | 16 October 2017 # 23 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

! Parallelism

Libraries are not enough?

You need to write your own GPU code?

Andreas Herten | GPU Introduction | 16 October 2017 # 24 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Primer on Parallel Scaling
Amdahl’s Law

Possible maximum speedup for N parallel processors
Total Time t = tserial + tparallel

N Processors t(N) = ts + tp/N
Speedup s(N) = t/t(N) = ts+tp

ts+tp/N Efficiency: ε = s/N

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
Number of Processors

0

20

40

60

80

100

Sp
ee

du
p

Parallel Portion: 50%
Parallel Portion: 75%
Parallel Portion: 90%
Parallel Portion: 95%
Parallel Portion: 99%

Andreas Herten | GPU Introduction | 16 October 2017 # 25 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Primer on Parallel Scaling
Amdahl’s Law

Possible maximum speedup for N parallel processors
Total Time t = tserial + tparallel

N Processors t(N) = ts + tp/N

Speedup s(N) = t/t(N) = ts+tp
ts+tp/N Efficiency: ε = s/N

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
Number of Processors

0

20

40

60

80

100

Sp
ee

du
p

Parallel Portion: 50%
Parallel Portion: 75%
Parallel Portion: 90%
Parallel Portion: 95%
Parallel Portion: 99%

Andreas Herten | GPU Introduction | 16 October 2017 # 25 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Primer on Parallel Scaling
Amdahl’s Law

Possible maximum speedup for N parallel processors
Total Time t = tserial + tparallel

N Processors t(N) = ts + tp/N
Speedup s(N) = t/t(N) = ts+tp

ts+tp/N Efficiency: ε = s/N

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
Number of Processors

0

20

40

60

80

100

Sp
ee

du
p

Parallel Portion: 50%
Parallel Portion: 75%
Parallel Portion: 90%
Parallel Portion: 95%
Parallel Portion: 99%

Andreas Herten | GPU Introduction | 16 October 2017 # 25 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Primer on Parallel Scaling
Amdahl’s Law

Possible maximum speedup for N parallel processors
Total Time t = tserial + tparallel

N Processors t(N) = ts + tp/N
Speedup s(N) = t/t(N) = ts+tp

ts+tp/N Efficiency: ε = s/N

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
Number of Processors

0

20

40

60

80

100

Sp
ee

du
p

Parallel Portion: 50%
Parallel Portion: 75%
Parallel Portion: 90%
Parallel Portion: 95%
Parallel Portion: 99%

Andreas Herten | GPU Introduction | 16 October 2017 # 25 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

! Parallelism

Parallel programming is not easy!

Things to consider:
Is my application computationally intensive enough?
What are the levels of parallelism?
Howmuch data needs to be transferred?
Is the gainworth the pain?

Andreas Herten | GPU Introduction | 16 October 2017 # 26 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Possibilities

Different levels of closeness to GPUwhen GPU-programming, which
can ease the pain…

OpenACC
OpenMP
Thrust
PyCUDA
CUDA Fortran
CUDA
OpenCL

Andreas Herten | GPU Introduction | 16 October 2017 # 27 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Possibilities

Different levels of closeness to GPUwhen GPU-programming, which
can ease the pain…

OpenACC
OpenMP
Thrust
PyCUDA
CUDA Fortran
CUDA
OpenCL

Andreas Herten | GPU Introduction | 16 October 2017 # 27 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Possibilities

Different levels of closeness to GPUwhen GPU-programming, which
can ease the pain…

OpenACC
OpenMP
Thrust
PyCUDA
CUDA Fortran
CUDA
OpenCL

Andreas Herten | GPU Introduction | 16 October 2017 # 27 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CUDA SAXPY
SAXPY: y⃗ = a⃗x+ y⃗ (single precision)

__global__ void saxpy_cuda(int n, float a, float * x, float * y) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y
cudaMallocManaged(&x, n * sizeof(float));
cudaMallocManaged(&y, n * sizeof(float));

saxpy_cuda<<<2, 5>>>(n, a, x, y);

cudaDeviceSynchronize();

Andreas Herten | GPU Introduction | 16 October 2017 # 28 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CUDA SAXPY
SAXPY: y⃗ = a⃗x+ y⃗ (single precision)

__global__ void saxpy_cuda(int n, float a, float * x, float * y) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y
cudaMallocManaged(&x, n * sizeof(float));
cudaMallocManaged(&y, n * sizeof(float));

saxpy_cuda<<<2, 5>>>(n, a, x, y);

cudaDeviceSynchronize();

Specify kernel

Andreas Herten | GPU Introduction | 16 October 2017 # 28 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CUDA SAXPY
SAXPY: y⃗ = a⃗x+ y⃗ (single precision)

__global__ void saxpy_cuda(int n, float a, float * x, float * y) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y
cudaMallocManaged(&x, n * sizeof(float));
cudaMallocManaged(&y, n * sizeof(float));

saxpy_cuda<<<2, 5>>>(n, a, x, y);

cudaDeviceSynchronize();

Specify kernel

ID variables

Andreas Herten | GPU Introduction | 16 October 2017 # 28 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CUDA SAXPY
SAXPY: y⃗ = a⃗x+ y⃗ (single precision)

__global__ void saxpy_cuda(int n, float a, float * x, float * y) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y
cudaMallocManaged(&x, n * sizeof(float));
cudaMallocManaged(&y, n * sizeof(float));

saxpy_cuda<<<2, 5>>>(n, a, x, y);

cudaDeviceSynchronize();

Specify kernel

ID variables

Guard against
too many threads

Andreas Herten | GPU Introduction | 16 October 2017 # 28 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CUDA SAXPY
SAXPY: y⃗ = a⃗x+ y⃗ (single precision)

__global__ void saxpy_cuda(int n, float a, float * x, float * y) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y
cudaMallocManaged(&x, n * sizeof(float));
cudaMallocManaged(&y, n * sizeof(float));

saxpy_cuda<<<2, 5>>>(n, a, x, y);

cudaDeviceSynchronize();

Specify kernel

ID variables

Guard against
too many threads

Allocate
GPU-capable
memory

Andreas Herten | GPU Introduction | 16 October 2017 # 28 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CUDA SAXPY
SAXPY: y⃗ = a⃗x+ y⃗ (single precision)

__global__ void saxpy_cuda(int n, float a, float * x, float * y) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y
cudaMallocManaged(&x, n * sizeof(float));
cudaMallocManaged(&y, n * sizeof(float));

saxpy_cuda<<<2, 5>>>(n, a, x, y);

cudaDeviceSynchronize();

Specify kernel

ID variables

Guard against
too many threads

Allocate
GPU-capable
memory

Call kernel
2 blocks, each 5 threads

Andreas Herten | GPU Introduction | 16 October 2017 # 28 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CUDA SAXPY
SAXPY: y⃗ = a⃗x+ y⃗ (single precision)

__global__ void saxpy_cuda(int n, float a, float * x, float * y) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y
cudaMallocManaged(&x, n * sizeof(float));
cudaMallocManaged(&y, n * sizeof(float));

saxpy_cuda<<<2, 5>>>(n, a, x, y);

cudaDeviceSynchronize();

Specify kernel

ID variables

Guard against
too many threads

Allocate
GPU-capable
memory

Call kernel
2 blocks, each 5 threads

Wait for
kernel to finish

Andreas Herten | GPU Introduction | 16 October 2017 # 28 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CUDA SAXPY
SAXPY: y⃗ = a⃗x+ y⃗ (single precision)

__global__ void saxpy_cuda(int n, float a, float * x, float * y) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y
cudaMallocManaged(&x, n * sizeof(float));
cudaMallocManaged(&y, n * sizeof(float));

saxpy_cuda<<<2, 5>>>(n, a, x, y);

cudaDeviceSynchronize();

Specify kernel

ID variables

Guard against
too many threads

Allocate
GPU-capable
memory

Call kernel
2 blocks, each 5 threads

Wait for
kernel to finish

Andreas Herten | GPU Introduction | 16 October 2017 # 28 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CUDA Threading Model
Warp the kernel, it’s a thread!

Methods to exploit parallelism:

— Threads

→ Block

— Blocks

→ Grid

— Threads & blocks in 3D3D3D3D

Execution entity: threads
— Lightweight→ fast switchting!
— 1000s threads execute simultaneously→ order non-deterministic!

OpenACC takes care of threads and blocks for you!
→ Block configuration is just an optimization!

Andreas Herten | GPU Introduction | 16 October 2017 # 29 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CUDA Threading Model
Warp the kernel, it’s a thread!

Methods to exploit parallelism:

— Thread

→ Block

— Blocks

→ Grid

— Threads & blocks in 3D3D3D3D

Execution entity: threads
— Lightweight→ fast switchting!
— 1000s threads execute simultaneously→ order non-deterministic!

OpenACC takes care of threads and blocks for you!
→ Block configuration is just an optimization!

Andreas Herten | GPU Introduction | 16 October 2017 # 29 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CUDA Threading Model
Warp the kernel, it’s a thread!

Methods to exploit parallelism:

— Threads

→ Block

— Blocks

→ Grid

— Threads & blocks in 3D3D3D3D

0 1 2 3 4 5

Execution entity: threads
— Lightweight→ fast switchting!
— 1000s threads execute simultaneously→ order non-deterministic!

OpenACC takes care of threads and blocks for you!
→ Block configuration is just an optimization!

Andreas Herten | GPU Introduction | 16 October 2017 # 29 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CUDA Threading Model
Warp the kernel, it’s a thread!

Methods to exploit parallelism:

— Threads → Block

— Blocks

→ Grid

— Threads & blocks in 3D3D3D3D

0 1 2 3 4 5

Execution entity: threads
— Lightweight→ fast switchting!
— 1000s threads execute simultaneously→ order non-deterministic!

OpenACC takes care of threads and blocks for you!
→ Block configuration is just an optimization!

Andreas Herten | GPU Introduction | 16 October 2017 # 29 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CUDA Threading Model
Warp the kernel, it’s a thread!

Methods to exploit parallelism:

— Threads → Block

— Block

→ Grid

— Threads & blocks in 3D3D3D3D

0 1 2 3 4 5

0

Execution entity: threads
— Lightweight→ fast switchting!
— 1000s threads execute simultaneously→ order non-deterministic!

OpenACC takes care of threads and blocks for you!
→ Block configuration is just an optimization!

Andreas Herten | GPU Introduction | 16 October 2017 # 29 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CUDA Threading Model
Warp the kernel, it’s a thread!

Methods to exploit parallelism:

— Threads → Block

— Blocks

→ Grid

— Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Execution entity: threads
— Lightweight→ fast switchting!
— 1000s threads execute simultaneously→ order non-deterministic!

OpenACC takes care of threads and blocks for you!
→ Block configuration is just an optimization!

Andreas Herten | GPU Introduction | 16 October 2017 # 29 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CUDA Threading Model
Warp the kernel, it’s a thread!

Methods to exploit parallelism:

— Threads → Block

— Blocks → Grid

— Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Execution entity: threads
— Lightweight→ fast switchting!
— 1000s threads execute simultaneously→ order non-deterministic!

OpenACC takes care of threads and blocks for you!
→ Block configuration is just an optimization!

Andreas Herten | GPU Introduction | 16 October 2017 # 29 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CUDA Threading Model
Warp the kernel, it’s a thread!

Methods to exploit parallelism:

— Threads → Block

— Blocks → Grid

— Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Execution entity: threads
— Lightweight→ fast switchting!
— 1000s threads execute simultaneously→ order non-deterministic!

OpenACC takes care of threads and blocks for you!
→ Block configuration is just an optimization!

Andreas Herten | GPU Introduction | 16 October 2017 # 29 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CUDA Threading Model
Warp the kernel, it’s a thread!

Methods to exploit parallelism:

— Threads → Block

— Blocks → Grid

— Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Execution entity: threads
— Lightweight→ fast switchting!
— 1000s threads execute simultaneously→ order non-deterministic!

OpenACC takes care of threads and blocks for you!
→ Block configuration is just an optimization!

Andreas Herten | GPU Introduction | 16 October 2017 # 29 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Summary of Acceleration Possibilities

Application

Libraries OpenACC
Directives

Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Andreas Herten | GPU Introduction | 16 October 2017 # 30 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Summary of Acceleration Possibilities

Application

Libraries OpenACC
Directives

Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Andreas Herten | GPU Introduction | 16 October 2017 # 30 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Summary of Acceleration Possibilities

Application

Libraries OpenACC
Directives

Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

This Course

Andreas Herten | GPU Introduction | 16 October 2017 # 30 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Conclusions

GPUs achieve performance by specialized hardware→ threads
— Faster time-to-solution
— Lower energy-to-solution

GPU acceleration can be done by different means
Libraries are the easiest, CUDA the fullest
OpenACC good compromise

Andreas Herten | GPU Introduction | 16 October 2017 # 31 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Conclusions

GPUs achieve performance by specialized hardware→ threads
— Faster time-to-solution
— Lower energy-to-solution

GPU acceleration can be done by different means
Libraries are the easiest, CUDA the fullest
OpenACC good compromise

Andreas Herten | GPU Introduction | 16 October 2017 # 31 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Conclusions

GPUs achieve performance by specialized hardware→ threads
— Faster time-to-solution
— Lower energy-to-solution

GPU acceleration can be done by different means
Libraries are the easiest, CUDA the fullest
OpenACC good compromise

Thank you

for your att
ention!

a.herten@fz-juelich.de

Andreas Herten | GPU Introduction | 16 October 2017 # 31 31

mailto:a.herten@fz-juelich.de

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Appendix
Glossary
References

Andreas Herten | GPU Introduction | 16 October 2017 # 1 8

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Glossary I

API A programmatic interface to software by well-defined
functions. Short for application programming
interface. 99

ATI Canada-based GPUsmanufacturing company; bought
by AMD in 2006. 3, 4, 5, 6, 7

CUDA Computing platform for GPUs from NVIDIA. Provides,
among others, CUDA C/C++. 2, 3, 4, 5, 6, 7, 72, 73, 74,
75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,
91, 95, 96, 97, 99

NVIDIA US technology company creating GPUs. 3, 4, 5, 6, 7, 12,
99

Andreas Herten | GPU Introduction | 16 October 2017 # 2 8

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Glossary II

NVLink NVIDIA’s communication protocol connecting CPU↔
GPU and GPU↔ GPUwith 80GB/s. PCI-Express:
16 GB/s. 12, 99

OpenACC Directive-based programming, primarily for many-core
machines. 1, 72, 73, 74, 83, 84, 85, 86, 87, 88, 89, 90, 91

OpenCL The Open Computing Language. Framework for writing
code for heterogeneous architectures (CPU, GPU, DSP,
FPGA). The alternative to CUDA. 3, 4, 5, 6, 7, 72, 73, 74

OpenGL The Open Graphics Library, an API for rendering
graphics across different hardware architectures. 3, 4,
5, 6, 7

OpenMP Directive-based programming, primarily for
multi-threadedmachines. 72, 73, 74

Andreas Herten | GPU Introduction | 16 October 2017 # 3 8

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Glossary III

P100 A large GPUwith the Pascal architecture fromNVIDIA. It
employs NVLink as its interconnect and has fast HBM2
memory. 12

Pascal GPU architecture from NVIDIA (announced 2016). 99

SAXPY Single-precision A× X+ Y. A simple code example of
scaling a vector and adding an offset. 75, 76, 77, 78, 79,
80, 81, 82

Tesla The GPU product line for general purpose computing
computing of NVIDIA. 12

Thrust A parallel algorithms library for (among others) GPUs.
See https://thrust.github.io/. 72, 73, 74

Andreas Herten | GPU Introduction | 16 October 2017 # 4 8

https://thrust.github.io/

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

References: Images, Graphics I

[5] Karl Rupp. Pictures: CPU/GPU Performance Comparison. URL:
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-
hardware-characteristics-over-time/ (pages 8–10).

[6] Mark Lee. Picture: kawasaki ninja. URL:
https://www.flickr.com/photos/pochacco20/39030210/
(pages 17, 18).

[7] Shearings Holidays. Picture: Shearings coach 636. URL:
https://www.flickr.com/photos/shearings/13583388025/
(pages 17, 18).

Andreas Herten | GPU Introduction | 16 October 2017 # 5 8

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://www.flickr.com/photos/pochacco20/39030210/
https://www.flickr.com/photos/shearings/13583388025/

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

References: Images, Graphics II

[8] Nvidia Corporation. Pictures: Pascal Blockdiagram, Pascal
Multiprocessor. Pascal Architecture Whitepaper. URL:
https://images.nvidia.com/content/pdf/tesla/
whitepaper/pascal-architecture-whitepaper.pdf
(pages 49–51).

[9] Wes Breazell. Picture: Wizard. URL:
https://thenounproject.com/wes13/collection/its-a-
wizards-world/ (pages 59–63).

Andreas Herten | GPU Introduction | 16 October 2017 # 6 8

https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://thenounproject.com/wes13/collection/its-a-wizards-world/
https://thenounproject.com/wes13/collection/its-a-wizards-world/

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

References: Literature I

[1] Kenneth E. Hoff III et al. “Fast Computation of Generalized
Voronoi Diagrams Using Graphics Hardware”. In: Proceedings
of the 26th Annual Conference on Computer Graphics and
Interactive Techniques. SIGGRAPH ’99. New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co., 1999, pp. 277–286. ISBN:
0-201-48560-5. DOI: 10.1145/311535.311567. URL:
http://dx.doi.org/10.1145/311535.311567 (pages 3–7).

[2] Chris McClanahan. “History and Evolution of GPU
Architecture”. In: A Survey Paper (2010). URL:
http://mcclanahoochie.com/blog/wp-
content/uploads/2011/03/gpu-hist-paper.pdf (pages 3–7).

[3] Jack Dongarra et al. TOP500. Nov. 2016. URL:
https://www.top500.org/lists/2016/11/ (pages 3–7).

Andreas Herten | GPU Introduction | 16 October 2017 # 7 8

https://doi.org/10.1145/311535.311567
http://dx.doi.org/10.1145/311535.311567
http://mcclanahoochie.com/blog/wp-content/uploads/2011/03/gpu-hist-paper.pdf
http://mcclanahoochie.com/blog/wp-content/uploads/2011/03/gpu-hist-paper.pdf
https://www.top500.org/lists/2016/11/

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

References: Literature II

[4] Jack Dongarra et al. Green500. Nov. 2016. URL:
https://www.top500.org/green500/lists/2016/11/
(pages 3–7).

[10] Gene M. Amdahl. “Validity of the Single Processor Approach to
Achieving Large Scale Computing Capabilities”. In:
Proceedings of the April 18-20, 1967, Spring Joint Computer
Conference. AFIPS ’67 (Spring). Atlantic City, New Jersey: ACM,
1967, pp. 483–485. DOI: 10.1145/1465482.1465560. URL:
http://doi.acm.org/10.1145/1465482.1465560.

Andreas Herten | GPU Introduction | 16 October 2017 # 8 8

https://www.top500.org/green500/lists/2016/11/
https://doi.org/10.1145/1465482.1465560
http://doi.acm.org/10.1145/1465482.1465560

	Introduction
	GPU History
	Architecture Comparison
	Jülich Systems
	App Showcase

	The GPU Platform
	3 Core Features
	High Throughput
	Summary

	Programming GPUs
	Libraries
	*gpu programming models
	*cuda

	Appendix
	Appendix
	Glossary
	References

